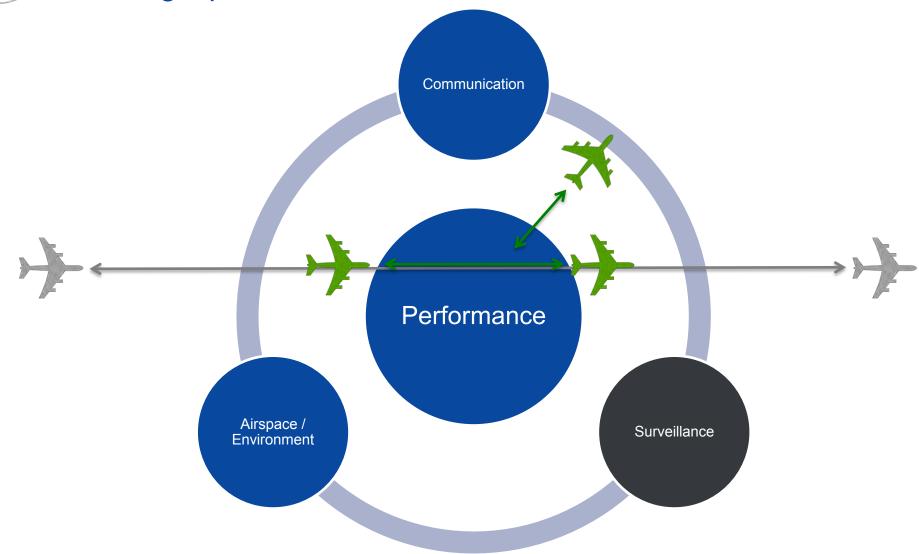
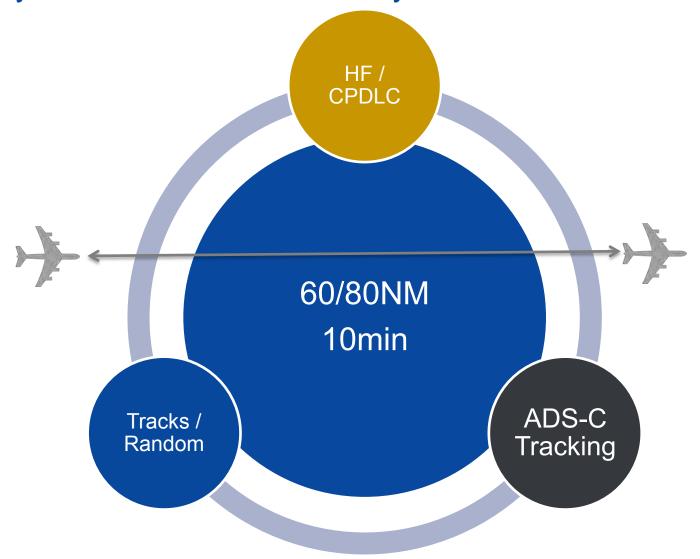


Space Based ADS-B

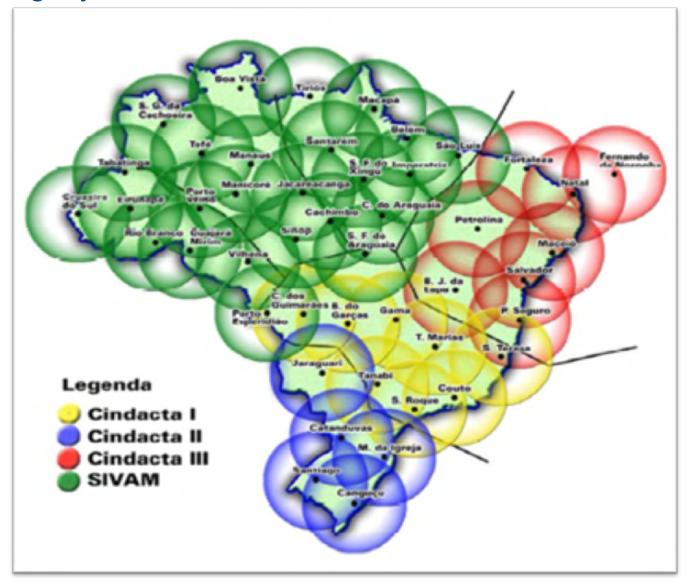
Transforming the Way you See the Sky March, 2015

ken.mclean@aireon.com




Enabling Operational Performance

Today's Oceanic / Remote Reality



The Legacy Terrestrial Solution

Automatic Dependent Surveillance – ADS-B (out)

- An innovative and proven surveillance concept through ground based stations
- Significant development in replacing or augmenting radar surveillance
- Upcoming transponder mandate for all aircraft in Europe and US
- Almost all new aircraft by default are ADS-B equipped

A quantum leap in aircraft surveillance — except...

Current surveillance is limited to line of sight

Over 70% of the world remains un-surveilled

Today's airline surveillance challenges

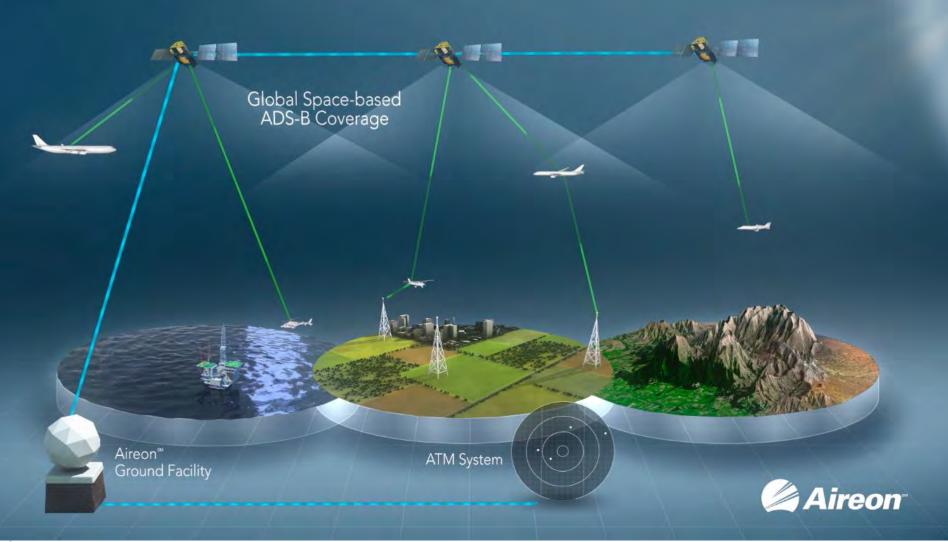
Oceanic / Remote

- Restricted speeds, routes and altitude
- Limited operational and weather flexibility
- Restricted flow / metering delays
- "Harmonica" separation
- Complexity / no harmonized system
- Converging avionics requirements
- Safety risk of being in un-surveilled airspace

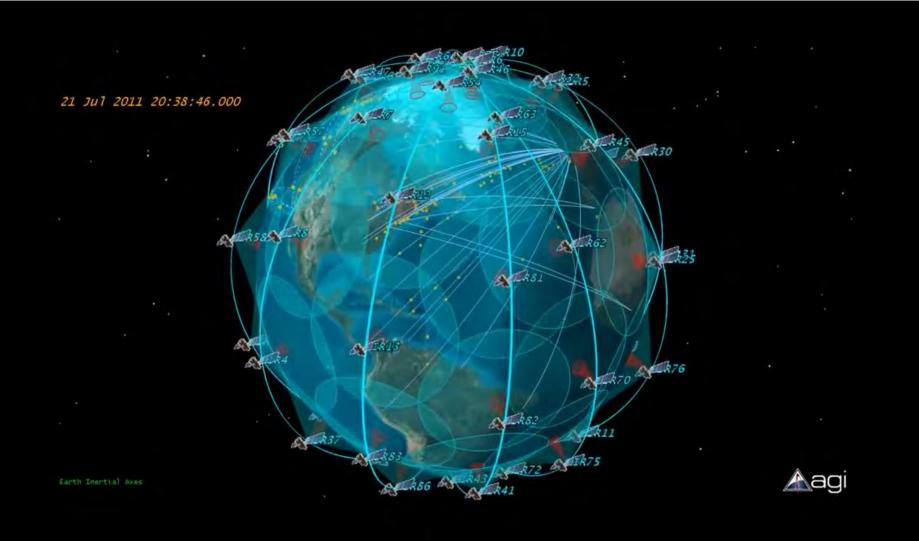
Terrestrial:

- High costs of surveillance signal duplication
- High costs of telecom / O&M
- Lack of cross-border signal sharing (flow restrictions)
- Contingency requires a full duplicate surveillance layer
- Significant time to implement large scale changes

Unlocking ATM performance



Unlocking ATM Performance



Transforming The Way You See The Sky

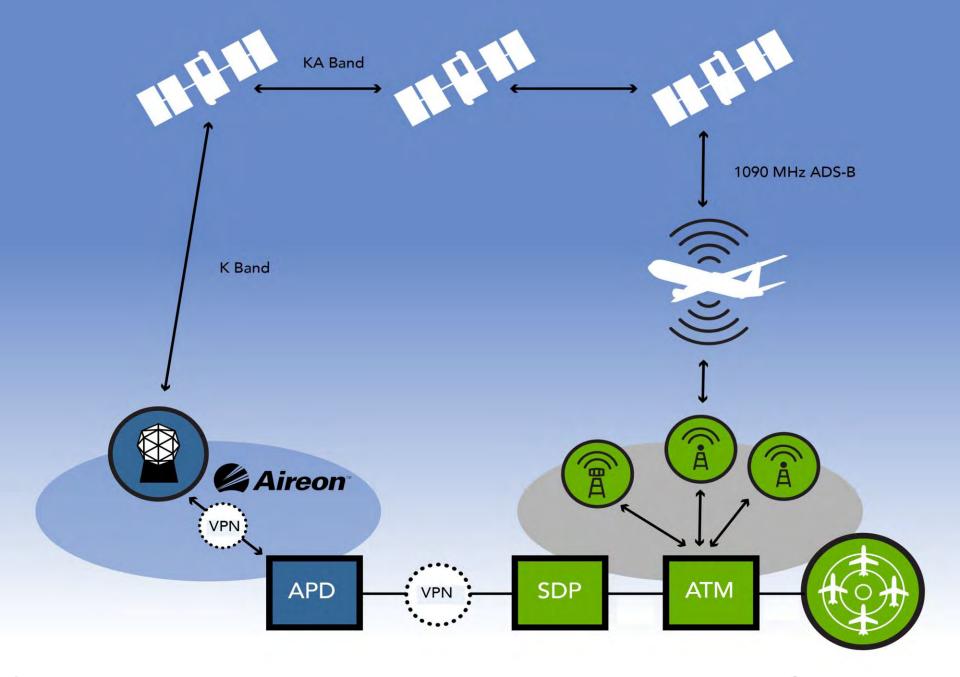
Aireon System

Investors, Innovators and Customers

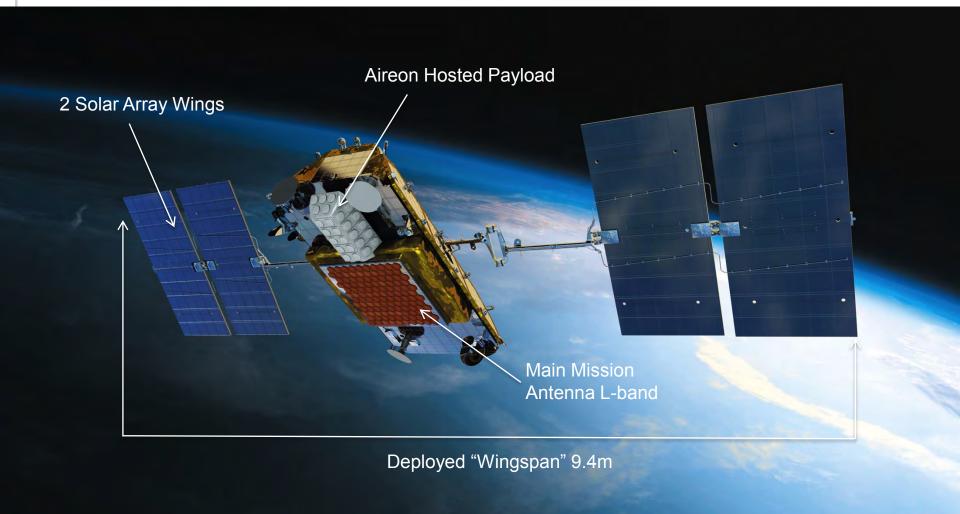
Investors, Customers and Innovators

Launch in 2015, Global Coverage in 2017

 A \$3 Billion US/Canadian/European satellite project, commissioned by Iridium, built by ThalesAlenia Space in France


 Space-qualified ADS-B receiver payload being developed by Harris Corporation will fly in a 72 LEO satellite constellation with 9 ground spares

 Systems engineering and ground data processing system by Exelis with significant expertise and existing ground based ADS-B infrastructure



Iridium NEXT Satellite Configuration

Aireon System Development Status

Aireon Payload

30 Units Produced 9 Delivered to Orbital

Hosted Payload Operations Center (HPOC)

HPOC Qualification Complete

Aireon Processing & **Distribution Center** (APD)

APD Qualification Complete Pre-launch acceptance test in Sep

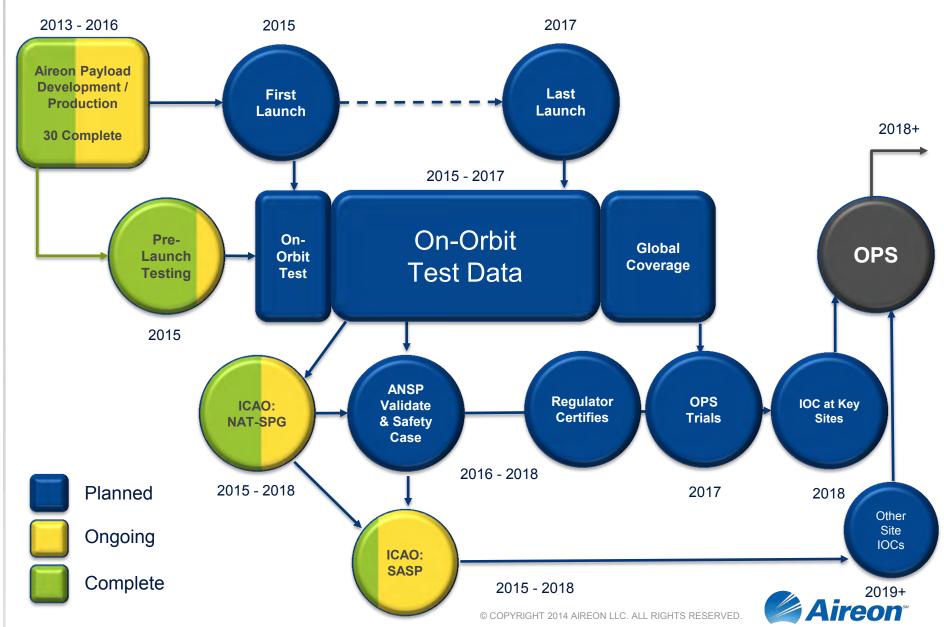
Service Delivery Point (SDP)

SDP connection to NAV CANADA to be completed by April 2015

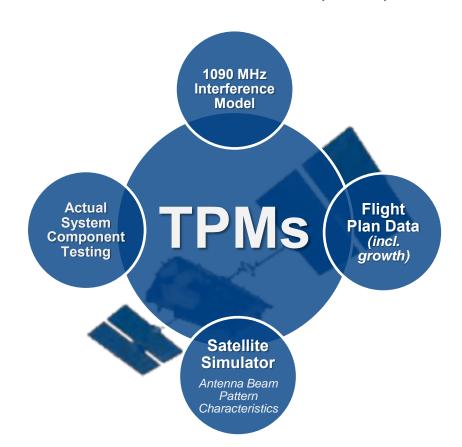
Satellite Integration

6 Satellites & Payloads Integrated

Launch


First launch planned for Oct 2015, first SpaceX launch planned 4 months later

Roadmap to Initial Operating Capability



Aireon Performance Simulation

Aireon has created a global performance simulation tool called ASIM to calculate critical Technical Performance Metrics (TPM):

- Update Interval
- Latency
- Availability

It's Just ADS-B!

	ATS Surveillance Requirements (EUROCAE)	Aireon
Surveillance Data-link Requirements	Variable Per Region (DO-260 Version 0, 1, 2)	Accepts all 1090ES ADS-B (DO-260 Versions 0, 1, 2)
Aircraft Transmitter Classes Supported	A1 or Higher (125 Watt minimum)	A1 or Higher (125 Watt minimum, with a top-mount antenna (TCAS)
Data Format to ANSP	ASTERIX CAT021, CAT023, CAT025 and FAA CAT033 and CAT023	ASTERIX CAT021, CAT023, CAT025 and FAA CAT033 and CAT023
Capacity	Minimum 250 within a high density service volume	≥10,000 simultaneous aircraft globally
System Coverage	Enroute Service Volume (200 NM)	Continuous Global Coverage
Availability	≥ 99.9%	≥ 99.9%
Latency	≤ 1.5s to the ATM Automation Platform	≤ 1.5s to the ATM Automation Platform
Update Interval	≤ 8s at 95%	Simulation and testing shows that targets will be delivered at an UI of ≤ 8s* at 95%

^{*} ASIM Simulation & Component Testing

Broad support among major ANSP's

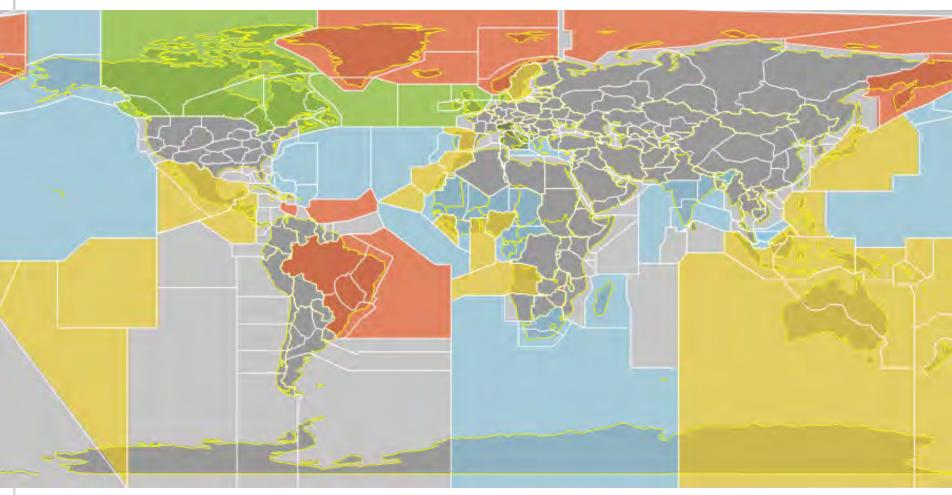
Launch Customers:

- Nav Canada, ENAV, NAVIAIR. Irish Aviation Authority
- UK-NATS

MOA in place with:

- FAA, Nav Portugal
- Singapore, India
- ASECNA, South Africa
- Blue Med Fab

MOA in development for:


- Trinidad, Brazil, Curacao
- Iceland, Russia, Australia, New Zealand

Next phase is securing strategic traffic corridors to deliver seamless operational benefits for airlines

DSA MOA to DSA MOA Development (Pre)-engaged

Space-Based ADS-B Integration Into ATM Systems

Sole Source Surveillance

 Provide a signal, suitable for surveillance, to an ATM system where it currently does not exist to enhance safety, efficiency and operational performance

Augmented surveillance

 Augment existing ADS-B or radar surveillance to fill gaps, improve performance, lower infrastructure costs, improve safety, share surveillance data and provide seamless contingency

Contingency surveillance

Oceanic Comparison (no DCPC)

	ADS-C	SSR	ADS-B Ground Station	Aireon
Avionics	SatCom	Mode S or ATCRBS Transponder	1090ES ADS-B (DO-260 versions 0, 1, 2)	1090ES ADS-B (DO-260 versions 0, 1, 2)
Single Receiver Footprint / Range	1300 NM	200 NM (varies with altitude)	200 NM (varies with altitude)	1100 NM
System Coverage	No Polar / Subscribed Only	Line of Sight Limitation	Line of Sight Limitation	Continuous Global Coverage
Availability	≥ 99.9%	≥ 99.9%	≥ 99.9%	≥ 99.9%
Latency (RSP / 95%)	180s	≤ 1.5s to the ATM Automation Platform	≤ 1.5s to the ATM Automation Platform	≤ 1.5s to the ATM Automation Platform
Update Interval (95%)	~14 minutes	< 8 – 12s	< 6 – 8s	< 8s*
Possible Separation	≥ 30NM	≤15NM	≤15NM	≤15NM

^{*} ASIM Simulation & Component Testing

5NM Surveillance Comparison (DCPC)

	ADS-C	SSR	ADS-B Ground Station	Aireon
Avionics	n/a	Mode S or ATCRBS Transponder	1090ES ADS-B (DO-260 versions 0, 1, 2)	1090ES ADS-B (DO-260 versions 0, 1, 2)
Single Receiver Footprint / Range	n/a	200 NM (varies with altitude)	200 NM (varies with altitude)	1100 NM
System Coverage	n/a	Line of Sight Limitation	Line of Sight Limitation	Continuously Global Coverage
Availability	n/a	≥ 99.9%	≥ 99.9%	≥ 99.9%
Latency (RSP / 95%)	n/a	≤ 1.5s to the ATM Automation Platform	≤ 1.5s to the ATM Automation Platform	≤ 1.5s to the ATM Automation Platform
Update Interval (95%)	n/a	< 8 – 12s	< 6s	< 8s*
Possible Separation	n/a	5NM	5NM	5NM

^{*} ASIM Simulation & Component Testing

NAV CANADA

Initial Oceanic Assessment

- High level assessment of 8 oceanic areas
- Based on 1,000' climb fuel savings
- Up to 3 climbs per flight

- Vetted with IATA airline member familiar with oceanic operations
- Considered conservative and achievable

Oceanic Assessment Benefits

Estimated \$439 million in 2018

Major Oceanic FIRs	Commercial IFR Flights (000s)	Total Fuel Climb Savings (000s)	GHGs (000s Tonnes CO ₂ Equivalent)
Pacific	131	\$169,776	446.4
Shanwick / Gander	390	\$127,000	332.8
New York-Santa Maria	138	\$64,584	169.8
US Coastal	109	\$7,358	19.3
Tasman Sea	48	\$3,240	8.5
Mumbai	22	\$1,337	3.5
North Atlantic above 65°	46	\$21,528	56.6
South Pacific	20	\$43,920	115.5
	904	\$438,742	1,152.4

Phased Implementation in the North Atlantic

- Phase 1 (2016) Conformance Monitoring of space based signal
- Phase 2 15NM longitudinal / ½ degree separation, on tracks between surveillance identified a/c
- Phase 3: 15NM Longitudinal off tracks between surveillance identified aircraft
- Phase 4: Allow surveillance identified aircraft to operate on all tracks which do not intersect
- Phase 5: 15 NM lateral separation between the tracks of surveillanceidentified aircraft operating on non-intersecting tracks
- Phase 6: Application of 15 NM separation between surveillanceidentified aircraft
- Evolving thereafter...

28

Aireon ALERT & Aircraft Flight Tracking

Aireon ADS_B Flight Tracking

- Aireon will have global ADS-B visibility
- Enables real time flight tracking without new avionics
- Position update available every 8 seconds or less

Aireon ALERT

- A 24/7 call center will be available through IAA's COM facility
- A free of charge alert system will be made available as a public service
- All airlines, States and Rescue Coordination Centers can pre-register
- In the event of a distress or alert phase where there is no known aircraft position, Aireon will make the last known position or track available.

Aireon ALERT will globally satisfy the ICAO 15 minute flight tracking recommendation at every 8 seconds without avionics costs.

The Cost Benefit Analysis Model

Business Case

Net Benefits Future Benefits Safety Benefits

Traffic & **Airspace**

Annual by Flow % ADS-B

> Route Structure

FAST TIME SIMULATION (Optional)

Optimal routing, Fuel burn by Flow

BADA

Climb Profile by Flow

Climb Benefit

Reduce Fuel Costs & GHG **BADA**

Time Savings by Flow

Delay Benefit

Reduce Fuel Costs & GHG

Airline Benefits

Infra Costs

Reduced Need of Current infrastructure

System Cost

Reduction

Incremental O&M Costs

Training Comm Other/ATM

One-Time Costs

ATC Comm SB-ADS-B (Aireon)

ANSP Costs

Avoided Future Investment (GANP, ASBU)

Infra Costs

Investment Cost Avoidance

ANSP Benefits

Total Annual **Benefits**

Total Annual Costs

Structure, Added Surveillance

Enhanced Safety

Collision Risk

Model, Existing

Net Benefits

Benefits Start Years of Benefit Discount Rate

Cash Flow, NPV

Identified Benefits Areas far Outweigh Costs

Primary Airline Benefits

Fuel / Time savings:

- Increased access to optimal altitudes
- Use of cost index air speeds
- Decreased flight distance from improved routing
- Minimize impact from operational and weather disruptions
- Reduced disruption from legacy surveillance system outages
- Reduced metering delay / improved flow
- More predictable airline operations

Cost Reduction:

- Avoided avionics investment
- Reduced training costs through harmonization of operating environment
- Reduced infrastructure costs / avoided costs

Primary ANSP Benefits

Cost Reduction:

- Reduced disruption from legacy surveillance system outages
- Decreased radar system replacement or maintenance costs
- Decreased ground based ADS-B replacement or maintenance costs
- Decreased WAM replacement or maintenance costs
- Avoided surveillance system expansion investment
- Avoided signal duplication and associated telecom costs
- Decreased infrastructure and signal costs through cross border contingency
- Reduced training costs through harmonization of operating environment
- Improved data for flight billing and airspace route design purposes

Safety & Societal Benefits

Safety Benefits:

- Reduced loss of separation
- Improved search and rescue services
- Reduction of gross navigation errors
- Reduced complexity through harmonization of operating environment
- Early detection of emergency transponder codes
- Improved airspace integration of UAS
- Improved data for flight billing and airspace route design purposes

Societal Benefits:

- Reduced Greenhouse Gas Emissions (carbon credit)
- Safety Gains

Value Added Data (to be determined)

Currently no global movement data set exists

- Airline Operations Control
- Actual movement data (real time)
- Flight Plan / Operational Analysis
- Data feed for airline / airport systems
- Historical Analysis
- Fleet Tracking
- Low cost situational awareness in towers / operational centers
- Airport surface movement
- Remote towers
- Insurance
- UAV integration
- Space vehicle tracking

•

Operational Transition Scenarios

CONOPS Scenarios	Capability	Communication	Surveillance	Separation
No surveillance with limited COM	Base Case	Limited	Procedural	Long 10 min (80 nm) Lat: 80nm to 120nm
		Limited	SB-ADSB Surveillance	Long 10 min (80 nm) Lat: 60nm or better
ADS-C	Base Case	HF/CPDLC	ADS-C	80, 40 or 30 nm
without DCPC		HF/CPDLC	SB-ADSB Surveillance	<15 nm
ADS-C with DCPC	Base Case	DCPC	ADS-C	30 nm
		DCPC	SB-ADSB Surveillance	5 nm
Existing Surveillance	Base Case	DCPC	Radar, WAM, or Ground Based ADS-B	5 nm
		DCPC	SB-ADSB Surveillance	5 nm

Structured Approach to New Data Services Agreements

Base Year
Phase 1:
Project Plan

Year N+1/2
Phase 2:
Engineering
Services
(Data)

Year N+2/3
Phase 3:
Service
Acceptance

Year N+4
Phase 4:
Operational
Data

- ANSP Pays Unique Costs
- Program Management Plan
- Aireon System Description Document
- Interface Control Document
- Site Survey
- Concept of Operations Survey
- Service Acceptance Data Package

 ANSP Pays Unique Costs

- Aireon pays signal delivery to demarcation point
- ANSP pays the telco to SDP
- Time and Material
- Support as needed by customer
- Support Safety Case
- Support Testing & Validation

 ANSP Pays Unique Costs (as in phase 2)

- SDP in place
- Test Plan
- Test Procedures
- Test Reports
- Service Acceptance Data Package
- Regulatory Approval
- Operational Trail (3 month)

Start Service Fee

- Data Service Agreement
- Service Level Agreement
- Operational Integration of Aireon
- Delivery of service

SPACE **BASED** ADS-B UNLOCK YOUR ATM POTENTIAL The benefits of aircraft surveillance are well known but surveillance is limited to the line of sight of expensive ground installations. Imagine extending the safety and operational benefits of surveillance and the cost benefits of ADS-B

The benefits of aircraft surveillance are well known but surveillance is limited to the line of sight of expensive ground installations. Imagine extending the safety and operational benefits of surveillance and the cost benefits of ADS-B to every Flight Information Region on the planet, without the investment costs and physical maintenance of ground infrastructure.

That's exactly what Aireon global ADS-B surveillance can do.

Globally operational in 2018.

